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Abstract. We demonstrate an analytical approach to many problems related
to crossing linear boundaries by random walk trajectories. Using factorization
identities is the main instrument of the method.
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Let 𝑋, 𝑋1, 𝑋2, . . . be a sequence of i.i.d. random variables, 𝑆𝑛 =
𝑋1 + · · ·+𝑋𝑛, 𝑛 ≥ 1. The sequence {𝑆𝑛} is usually called a random walk.
Boundary crossing problems involve the study of distributions associated
with reaching (or not reaching) the boundary of certain set for random
walk trajectories.

Given a Borel set 𝐵 ⊂ R, introduce the first hitting time

𝑁 = min{𝑛 ≥ 1 : 𝑆𝑛 ∈ 𝐵}.

Put 𝑁 = ∞ if 𝑆𝑛 ∈ 𝐵 = R ∖𝐵 for all 𝑛.
We are interesting in the joint distribution of the pair (𝑁, 𝑆𝑁 ) in the

cases: 𝐵 = [𝑏,∞), 𝐵 = (−∞, 𝑎] (one-sided problems, 𝑎 < 0, 𝑏 > 0),
𝐵 = (−∞, 𝑎]∪ [𝑏,∞) (two-sided problem). The distribution of the sojourn
time above a level and the distribution of the number of crossings of a
strip by sample paths of a random walk are of our interest as well.

Introduce the double Laplace–Stieltjes transform (LST)

𝑄(𝑧, 𝜆) = E
(︀
𝑧𝑁𝑒𝜆𝑆𝑁 ; 𝑁 < ∞

)︀
=

∞∑︁
𝑛=1

𝑧𝑛
∫︁
𝐵

𝑒𝜆𝑦P(𝑁 = 𝑛, 𝑆𝑁 ∈ 𝑑𝑦),

and, in addition, the functions

𝑄0(𝑧, 𝜆) =

∞∑︁
𝑛=1

𝑧𝑛E
(︀
𝑒𝜆𝑆𝑛 ; 𝑁 > 𝑛

)︀
, 𝜙(𝜆) = E𝑒𝜆𝑋 .

The following assertion (the main identity) is available [1, Ch. 18].
Theorem 1 For |𝑧| < 1 and Re𝜆 = 0 the following identity holds:(︀

1 − 𝑧𝜙(𝜆)
)︀(︀

1 + 𝑄0(𝑧, 𝜆)
)︀

= 1 −𝑄(𝑧, 𝜆). (1)



So we have one equation containing two unknown functions. Neverthe-
less, we can solve it and find the functions 𝑄(𝑧𝜆) and 𝑄0(𝑧𝜆) in one-sided
and two-sided problems, but, to this end, we need factorization of the
function 1 − 𝑧𝜙(𝜆).

It is well known (see, e.g., [2]) that the factorization

1 − 𝑧𝜙(𝜆) = 𝑅−(𝑧, 𝜆)𝑅+(𝑧, 𝜆), |𝑧| < 1, Re𝜆 = 0, (2)

holds, where the function 𝑅+(𝑧, 𝜆) is analytic with respect to 𝜆 in the left
half-plane Re𝜆 < 0, continuous at the border, and it is bounded and does
not equal zero when Re𝜆 ≤ 0. The function 𝑅−(𝑧, 𝜆) has similar prop-
erties in the right half-plane. The components of a factorization with the
above properties are defined uniquely up to a constant factor. In addition,
the functions 𝑅+(𝑧, 𝜆), 𝑅−1

+ (𝑧, 𝜆) belong to 𝑆
(︀
[0,∞)

)︀
, and the functions

𝑅−(𝑧, 𝜆), 𝑅−1
− (𝑧, 𝜆) belong to 𝑆

(︀
(−∞, 0]

)︀
. Here 𝑆(𝐴) denotes the set of

functions 𝑔 taking the form

𝑔(𝜆) =

∫︁
𝐴

𝑒𝜆𝑦𝑑𝐺(𝑦), where
∫︁
𝐴

|𝑑𝐺(𝑦)| < ∞, Re𝜆 = 0.

Given a function 𝑔 ∈ 𝑆(R), we define

[𝑔(𝜆)]𝐴 =

∫︁
𝐴

𝑒𝜆𝑦𝑑𝐺(𝑦)

for each Borel set 𝐴. As an example, we now show how the main identity
(1) can be solved in one-sided and two-sided problems (see [3], [4]).
Theorem 2 Let 𝑏 > 0 and 𝐵 = [𝑏,∞). Then

𝑄(𝑧, 𝜆) = 𝑅+(𝑧, 𝜆)
[︀
𝑅−1

+ (𝑧, 𝜆)
]︀[𝑏,∞)

, |𝑧| < 1, Re𝜆 = 0. (3)

Proof. We use the relation

𝑅−(𝑧, 𝜆)𝑄0(𝑧, 𝜆) = −𝑅−(𝑧, 𝜆) + 𝑅−1
+ (𝑧, 𝜆)

(︀
1 −𝑄(𝑧, 𝜆)

)︀
,

which follows from (1) and (2). The left-hand side of the above relation
belongs to 𝑆

(︀
(−∞, 𝑏)

)︀
, so[︁

−𝑅−(𝑧, 𝜆) + 𝑅−1
+ (𝑧, 𝜆)

(︀
1 −𝑄(𝑧, 𝜆)

)︀]︁[𝑏,∞)

≡ 0.

Clearly,
[︀
𝑅−(𝑧, 𝜆)

]︀[𝑏,∞) ≡ 0. Further, under our conditions, 𝑄(𝑧, 𝜆) ∈
𝑆([𝑏,∞)), so 𝑅−1

+ (𝑧, 𝜆)𝑄(𝑧, 𝜆) ∈ 𝑆
(︀
[𝑏,∞)

)︀
. Hence,[︁

𝑅−1
+ (𝑧, 𝜆)

(︀
1 −𝑄(𝑧, 𝜆)

)︀]︁[𝑏,∞)

=
[︁
𝑅−1

+ (𝑧, 𝜆)
]︁[𝑏,∞)

−𝑅−1
+ (𝑧, 𝜆)𝑄(𝑧, 𝜆) = 0.



A symmetric reasoning establishes that

𝑄(𝑧, 𝜆) = 𝑅−(𝑧, 𝜆)
[︀
𝑅−1

− (𝑧, 𝜆)
]︀(−∞,𝑎] if 𝐵 = (−∞, 𝑎], 𝑎 < 0. (4)

By definition, given a function 𝑔 ∈ 𝑆(R), we put

(ℒ−𝑔)(𝑧, 𝜆) = 𝑅−(𝑧, 𝜆)
[︀
𝑅−1

− (𝑧, 𝜆)𝑔(𝜆)
]︀(−∞,𝑎]

,

(ℒ+𝑔)(𝑧, 𝜆) = 𝑅+(𝑧, 𝜆)
[︀
𝑅−1

+ (𝑧, 𝜆)𝑔(𝜆)
]︀[𝑏,∞)

.

Here |𝑧| < 1, Re𝜆 = 0, the function 𝑔 may also depend on 𝑧. As can be
seen from the definition, the operators ℒ± depend also on 𝑧, 𝑎, and 𝑏. For
brevity, we do not emphasize this fact in the notations of operators. Put
𝑒(𝜆) = 𝑒(𝑧, 𝜆) ≡ 1. In the new notations, the formulas (3) and (4) can be
rewritten in the following way:

𝑄(𝑧, 𝜆) = (ℒ+𝑒)(𝑧, 𝜆) if 𝐵 = [𝑏,∞),

𝑄(𝑧, 𝜆) = (ℒ−𝑒)(𝑧, 𝜆) if 𝐵 = (−∞, 𝑎].

It turns out that the double LST in the two-sided problem can be also
expressed via operators ℒ±. Really, put 𝐵 = (−∞, 𝑎] ∪ [𝑏,∞) then

𝑁 = min
{︀
𝑛 ≥ 1 : 𝑆𝑛 /∈ (𝑎, 𝑏)

}︀
, 𝑎 < 0, 𝑏 > 0.

Let

𝑄1(𝑧, 𝜆) = E
(︀
𝑧𝑁𝑒𝜆𝑆𝑁 ; 𝑆𝑁 ≤ 𝑎

)︀
, 𝑄2(𝑧, 𝜆) = E

(︀
𝑧𝑁𝑒𝜆𝑆𝑁 ; 𝑆𝑁 ≥ 𝑏

)︀
.

Then 𝑄(𝑧, 𝜆 = 𝑄1(𝑧, 𝜆) + 𝑄2(𝑧, 𝜆).
In the same way as in Theorem 2, from (1) and (2) we obtain

𝑄2(𝑧, 𝜆) = (ℒ+𝑒)(𝑧, 𝜆) − (ℒ+𝑄1)(𝑧, 𝜆), (5)

𝑄1(𝑧, 𝜆) = (ℒ−𝑒)(𝑧, 𝜆) − (ℒ−𝑄2)(𝑧, 𝜆). (6)
Substituting the expression (6) for 𝑄1(𝑧, 𝜆) into (5) leads to the identity

𝑄2(𝑧, 𝜆) = (ℒ+𝑒)(𝑧, 𝜆) − (ℒ+ℒ−𝑒)(𝑧, 𝜆) + (ℒ+ℒ−𝑄2)(𝑧, 𝜆),

and, in a similar way, we arrive at the identity for 𝑄1:

𝑄1(𝑧, 𝜆) = (ℒ−𝑒)(𝑧, 𝜆) − (ℒ−ℒ+𝑒)(𝑧, 𝜆) + (ℒ−ℒ+𝑄1)(𝑧, 𝜆). (7)

Further, for a random walk with nonzero drift, consider the random
variable 𝜂 equal to the number of upcrossings of the strip with boundaries
at the levels 𝑎 < 0 and 𝑏 > 0. It turns out [5] that, in this case,

P(𝜂 ≥ 𝑘) = lim
𝑧→1

(︀
(ℒ+ℒ−)𝑘𝑒

)︀
(𝑧, 0), 𝑘 ≥ 1.



Thus, we see that, in many boundary crossing problems connected with
the achievement of a set with linear boundaries, LST of the distributions
under study are expressed in terms of the operators ℒ±. So, we need to
clarify the probabilistic meaning of these operators, as well as the possibil-
ity of finding explicit expressions for them and asymptotic representations.

Discuss a probabilistic meaning. First, it is not difficult to deduce from
(1) that 𝑄(𝑧, 𝜆) = 1−𝑅+(𝑧, 𝜆) for 𝐵 = (0,∞) and 𝑄(𝑧, 𝜆) = 1−𝑅−(𝑧, 𝜆)
for 𝐵 = (−∞, 0). In both of these cases the function 𝑄(𝑧, 𝜆) is a joint
distribution of the corresponding ladder epoch and ladder height of the
random walk. Thus, using factorization components for finding the LST of
distributions of boundary functionals means that the desired distributions
are expressed in terms of the distributions of ladder values, which is quite
natural.

Further, let 𝜏 ≥ 0 be an arbitrary stopping time, possibly improper.
At the event {𝜏 < ∞}, we define the random variables

𝜏+(𝑏) = inf{𝑛 ≥ 𝜏 : 𝑆𝑛 ≥ 𝑏}, 𝜏−(𝑎) = inf{𝑛 ≥ 𝜏 : 𝑆𝑛 ≤ 𝑎}.

Suppose that the double transform 𝑓(𝑧, 𝜆) = E
(︀
𝑧𝜏 exp{𝜆𝑆𝜏}; 𝜏 < ∞

)︀
is

known. The problem is to find the functions

𝑓+(𝑧, 𝜆) = E
(︀
𝑧𝜏+(𝑏) exp{𝜆𝑆𝜏+(𝑏)}; 𝜏+(𝑏) < ∞

)︀
,

𝑓−(𝑧, 𝜆) = E
(︀
𝑧𝜏−(𝑎) exp{𝜆𝑆𝜏−(𝑎)}; 𝜏−(𝑎) < ∞

)︀
.

The following assertion is obtained in [5].
Theorem 3 For |𝑧| < 1 and Re𝜆 = 0, the following relations hold:

𝑓±(𝑧, 𝜆) = (ℒ±𝑓)(𝑧, 𝜆).

The assertion of this theorem makes clear the probabilistic meaning of
all summands in (5) and (6). We note in passing that, under the conditions
of the theorem, the distributions of jumps of a walk to the time 𝜏 and after
it may not coincide. This makes it possible to consider random walks in
which the distribution of jumps varies at the moment of passing certain
boundaries.

Next, we discuss the possibilities of calculating the factorization com-
ponents and operators ℒ± in an explicit form. The explicit form of the
factorization components is known for Gaussian random walks [6] and for
walks for which the function E

(︀
exp{𝜆𝑋}; 𝑋 < 0

)︀
or E

(︀
exp{𝜆𝑋}; 𝑋 > 0

)︀
is rational [2]. For example, if the function

E
(︀

exp{𝜆𝑋}; 𝑋 > 0
)︀

=
𝑅(𝜆)

𝑃 (𝜆)
, where 𝑃 (𝜆) =

𝑘∏︁
𝑖=1

(𝜆− 𝑝𝑖),



is rational then

𝑅+(𝑧, 𝜆) =
Λ(𝑧, 𝜆)

𝑃 (𝜆)
, 𝑅−(𝑧, 𝜆) =

(1 − 𝑧𝜙(𝜆))𝑃 (𝜆)

Λ(𝑧, 𝜆)
,

where Λ(𝑧, 𝜆) =
∏︀𝑘

𝑗=1(𝜆− 𝜆𝑗(𝑧)), and 𝜆1(𝑧), . . . , 𝜆𝑘(𝑧) are zeros of the
function 1−𝑧𝜙(𝜆) in the right half-plane (with considering their multiplic-
ities). In this case the calculation of (ℒ+𝑔)(𝑧, 𝜆) becomes a simple exercise
if the function 𝑅−1

+ (𝑧, 𝜆) is first decomposed on simple fractions.
Let us now investigate the asymptotic behavior of the operators ℒ± as

𝑎 → −∞, 𝑏 → ∞. We assume here that the distribution of 𝑋 contains an
absolutely continuous component and the Cramér condition holds: 𝜙(𝜆) <
∞ for −𝛾 ≤ 𝜆 ≤ 𝛽, 𝛾 > 0, 𝛽 > 0. In addition, we assume that E𝑒𝛽𝑋 > 1
if E𝑋 < 0 and E𝑒−𝛾𝑋 > 1 if E𝑋 > 0. Under these conditions, one can
distinguish the principal terms of the asymptotics for (ℒ±𝑔)(𝑧, 𝜆) as 𝑎 →
−∞, 𝑏 → ∞ and estimate the remainders that turn out to be exponentially
small in comparison with the principal terms (see [4]). As a result, for
the two-sided boundary crossing problem, from (7) we obtain

E
(︀
𝑧𝑁𝑒𝜆𝑆𝑁 ;𝑆𝑁 ≥ 𝑏

)︀
= 𝑣𝑧(𝜆)𝑒𝜆𝑏

𝑒−𝜆+(𝑧)𝑏(1 − 𝑣2(𝑧)𝜇𝑎(𝑧))

1 − 𝑣1(𝑧)𝑣2(𝑧)𝜇𝑎+𝑏(𝑧)

(︀
1 + 𝑂

(︀
𝑒−𝜀𝑏)

)︀)︀
(8)

as 𝑎 → −∞, 𝑏 → ∞, uniformly in 𝑧 ∈ (1 − 𝛿, 1) for some 𝛿 > 0, where

𝑣𝑧(𝜆) =
𝑅+(𝑧, 𝜆)

(𝜆− 𝜆+(𝑧))𝑅′
+(𝑧, 𝜆+(𝑧))

, 𝑢𝑧(𝜆) =
𝑅−(𝑧, 𝜆)

(𝜆− 𝜆−(𝑧))𝑅′
−(𝑧, 𝜆−(𝑧))

,

𝑣1(𝑧) = 𝑣𝑧(𝜆−(𝑧)), 𝑣2(𝑧) = 𝑢𝑧(𝜆+(𝑧)), 𝜇(𝑧) = exp{𝜆−(𝑧)−𝜆+(𝑧)},
and 𝜆−(𝑧) < 0 < 𝜆+(𝑧) are zeros of the function 1 − 𝑧𝜙(𝜆).

The corresponding assertion for the one-sided problem is a particular
case of (8) with 𝑎 = −∞. If P(𝑋 ≥ 𝑡) = 𝑞 exp{−𝛼𝑡} for 𝑡 ≥ 0 then

𝑣𝑧(𝜆) =
𝜆+(𝑧) − 𝛼

𝜆− 𝛼
and 𝑂

(︀
𝑒−𝜀𝑏

)︀
vanishes in (8).

The main terms of the resulting asymptotic representations are easily
invertible in the variable 𝜆. Tending 𝑧 to 1, from them one can obtain many
useful consequences. The inversion of the principal parts with respect to
𝑧 is a sufficiently difficult task that is far beyond the scope of this article.
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