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Abstract. In this paper we have two main goals. One of them is to construct
stochastic processes associated with a class of systems of semilinear parabolic
equations which allow to obtain a probabilistic representation of a solution to
the Cauchy problem for a system from this class. The second goal is to reduce
the Cauchy problem solution to a closed system of stochastic relations, prove
the existence and uniqueness theorem for this system and apply it to develop a
numerical algorithm to get a required solution of the problem under considera-
tion.
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1. Introduction

Systems of the second order parabolic equations arise as mathematical
models of various phenomena in physics, chemistry, biology, economics
and finance and other fields. In some cases one can find that there exist
stochastic processes associated with them ( actually, not merely diffusion
processes). This allows to interpret these systems as systems of forward or
backward Kolmogorov equations for these processes. This interpretation
not only reveals intrinsic links between macro and micro processes but
also allows to develop new effective algorithms of numerical solution of the
considered parabolic system.

In this paper we consider the backward Cauchy problem for a system
of semilinear and quasilinear parabolic equations of the form

∂um

∂s
+ Lu

mu
m + [Quu]m = 0, um(T, x) = um0 (x) m = 1, . . . , d1, (1)

with a bounded smooth "initial" function u0(x) ∈ Rd1 , x ∈ Rd. Here d, d1

are fixed integers, Lv
mu

m = 〈am,∇um〉+ 1
2TrA

m∇2um[Am]∗ and the ma-
trix Qu = (qml(x, u)) possesses the properties of a Q-matrix :

1) qml(x, u) is uniformly bounded in x ∈ Rd and has polylinear growth
in u ∈ Rd1 for fixed l,m ∈ V = {1, 2, . . . , d1};

2) qml(x, u) ≥ 0 for any x ∈ Rd, u ∈ Rd1 and l 6= m;



3) qmm(x, u) = −
∑

l 6=m qml(x, u) for any x ∈ Rd, u ∈ Rd1 ,m ∈ V.
We aim first to construct stochastic processes which allow to obtain a

probabilistic representation of a classical solution of the Cauchy problem
(1) and apply this representation to construct a numerical approximation
of the solution. Then we construct stochastic processes associated with
a viscosity solution of the Cauchy problem (1) construct a numerical ap-
proximation of the solution.

2. Probabilistic representation of a classical solution of the
Cauchy problem for a system of semilinear PDEs

Let (Ω,F , P ) be a given probability space, w(t) ∈ Rd be a Wiener
process and γ(t) be a Markov chain with the generator Q, defined on this
space. Consider a system of relations including a stochastic differential
equation (SDE) with respect to a process ξ(t) ∈ Rd

dξ(t) = au(ξ(t), γ(t))dt+Au(ξ(t), γ(t))dw(t), ξ(s) = x, γ(s) = m, (2)

where γ(t) is the Markov chain with the transition probability

P{γ(t+ ∆t) = l|γ(t) = m, ξ(θ), γ(θ), θ ≤ t} = quml(ξ(t))∆t+ o(∆t), (3)

when l 6= m and a relation

u(s, x) = E[u0(ξs,x(T ), γs,m(T ))]. (4)

Here a : Rd × V × Rd1 → Rd, A : Rd × V × Rd11 → Rd ⊗ Rd and we use
notations of the form au(x,m) ≡ a(x,m, u(x,m)).

To construct a probabilistic representation of the classical solution
to the Cauchy problem (1) we need an alternative representation of the
Markov chain γ(t) via stochastic integral with respect to a random Poisson
measures p(dz, dt).

To describe this representation for fixed x ∈ Rd, v ∈ Rd1 we consider a
random Poisson measure p(dt, dz) defined on the space Ω×[0, T ]×G, where
G ⊂ R+ . Next we choose a set of the consecutive left-closed, right-open
intervals ∆lm(x, v) covering G and having the length qlm(x, v) = qvlm(x)
and let Ep(dt, dz) = dtdz, where dz is the Lebesgue measure.

At the end define a scalar function gx,v(m, z) by relations gx,v(m, z) =

m − l, when z ∈ ∆lm(x, v), and 0 otherwise or gx,v(m, z) =
∑M

m=1(m −
l)I{z∈∆lm(x,v)}. Then a stochastic differential of the Markov process γ(t)
with the transition probability (3) has the form

dγ(t) =

∫
G

gu(ξ(t), γ(t−), z)p(dt, dz), γ(s) = m, . (5)



It should be mentioned that relations (2), (4), (5) make a closed system.
To find a solution to this system we need some conditions on its coefficients.

Condition C 1. Coefficients au(x,m), Au(x,m) of SDE (2) are Lips-
chitz continuous in x and u, have a sublinear growth in x and polylinear
growth in u for fixed m as well as the matrix Qu(x) is.

Theorem 1. Assume that for each m ∈ V there exists a unique
classical solution u(s, x,m) of the Cauchy problem (1) and for this um
coefficients of SDE (2) and (5) and the matrix Qu(X) satisfy C 1. Then
there exists a unique solution of the system (2), (5) and the function
u(s, x,m) admits the representation (4).

Let us state conditions to ensure the existence and uniqueness of a
solution of the system (2), (4),(5) and the function u(s, x,m) given by (5)
is a unique classical solution of the Cauchy problem (1).

We say that a triple (ξs,x(t), γs,m(t), u(s, x,m)) satisfies the system
(2), (4), (5) if (ξs,x(t), γs,m(t)) is a two-component Ft-adapted process
such that

ξ(t) = x+

∫ t

s

au(ξ(θ), γ(θ))dt+

∫ t

s

Au(ξ(θ), γ(θ))dw(θ),

γ(t) = m+

∫ t

s

∫
R

gu(ξ(θ), γ(θ), z)p(dθ, dz),

hold with probability 1 and u(s, x,m) given by (3) are bounded Lipschitz
continuous in z functions defined on [0, T ]×Rd × V .

Condition C 2. Assume that C 1 holds and a(x, v,m), A(x, v,m), Q(x, v)
are k-times differentiable in x and v, while u0,m(x) are bounded and k -
times differentiable for each m ∈ V .

Theorem 2. Assume that C 2 holds for k = 1. Then there exists an
interval [T1, T ] ⊂ [0, T ] such that for all s ∈ [T1, T ] there exists a unique
solution of the system (2),(4), (5).

Theorem 3. Assume that C 2 holds for k = 2. Then there exists
an interval [T1, T ] ⊂ [0, T ], Then there exists an interval such that for all
s ∈ [T2, T ], T2 ≤ T1, there exists a unique solution of the system (2),(4),
(5) and u(s, x) given by (3) is the unique classical solution of (1).

To prove the existence of a solution to (2), (4), (5) we construct suc-
cessive approximations

ξ0(θ) = x, γ0(θ) = m,u1(θ, x,m) = um0 (x),

ξ1(t) = x+

∫ t

s

a(ξ1(θ), γ1(θ), u1(θ, ξ1(θ), γ1(θ))))dθ,

+

∫ t

s

A(ξ1(θ), γ1(θ), u1(θ, ξ1(θ), γ1(θ))))dw(θ),



γ1(t) = m+

∫ t

s

∫
R

g(ξ1(θ), u1(θ, ξ1(θ)), γ1(θ), z)p(dθ, dz),

um2 (s, x) = E[um0 (ξ1
s,x(T ), γ1

s,m(T ))].

We continue the recursive procedure to derive equations for processes
ξns,x(t), γns,m(t) and functions umn (s, x). We can prove under the above
conditions [2] that ξns,x(t), γns,m(t) converge in the square mean sense to so-
lutions ξs,x(t), and γs,m(t) of SDE (3) and (5), while functions umn (s, x) for
each s ∈ (T2, t] uniformly in x converge to a bounded Lipschitz continuous
function um(s, x).

Linear systems of the form (1) with coefficients Au(x) = A(x), au(x)
= a(x), qu(x) = q were studied in [1] , where probabilistic representations
of a classical solution to the corresponding linear system were derived.
These results were extended to nonlinear systems in [2] and this allows to
use the representation (3) of the classical solution of the Cauchy problem
(1) to obtain numerical results.

Let s = t0 ≤ t1 ≤ · · · ≤ tn = T, ∆t = tk+1 − tk = T−s
n , ζ ∈ {−1, 1}

P (ζ = −1) = P (ζ = 1) = 1
2 . Applying the explicit Euler scheme, iteration

process and the simplest approximation of a random variable w(t+ ∆t)−
w(t) by a random variable κ = ζ

√
∆t, we develop an explicit method of

solution to (1)

ū1(θ, x,m) = u0(x,m), ξ̄0(θ) = x, γ̄0(θ) = m, θ ∈ [s, T ],

ξ̄1(tk+1) = x+ a(x,m, ū1(tk+1, x,m))∆t

+A(x,m, ū1(tk+1, x,m))ζ
√

∆t,

γ̄(tk+1) = l +

∫
R

g(m, z)p(ū1(tk+1, x,m),∆t, dz),

ū(tk, x,m) = Eū(tk+1, ξ̄tk,x(tk+1), γ̄tk,l(tk+1))

=
1

2

M∑
j=1

[ū(tk+1, x+ãk∆t+Ãk

√
∆t, j)+ū(tk+1, x+ãk∆t−Ãk

√
∆t, j]qūmj∆t,

where ãk = a(ξ(tk), ū(tk+1, ξ(tk), γ(tk)), Ãk = A(ξ(tk), ū(tk+1, ξ(tk), γ(tk)).
Since the two component process (ξ(θ), γ(θ)) ∈ Rd×V is a Markov process,
we know that the relation

u(s, x,m) = Eu0(ξs,x(T ), γs,m(T )) = U(s, T )u0(x,m) (6)

gives rise to a nonlinear evolution family U(s, T ). Set

Ū(tk, tk+1u = ū(tk, x,m) = Eu(tk+1, ξ̄tk,x(tk+1), γ̄tk,m(tk+1))



and note that similar to the linear case [3], under C 2 condition we get an
estimate

sup
x
|um(tk, x)− ūm(tk, x)| ≤ C(∆t)2.

This results (see [4]) that one can approximate the evolution family U(s, t)
defined by (6) using a (nonevolution) family

Vn(s, T )u0(x,m) =

n∏
k=1

Ū(tk−1, tk)u0(x,m).

3. Conclusions

We have derived probabilistic representations of classical solutions of
the Cauchy problem for a class of semilinear parabolic equations. These
representations are used to construct an explicit algorithm for obtaining a
numerical solution to the considered Cauchy problem.
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