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1. Formulation of the problem

Let (τ, ζ), (τ1, ζ1), (τ2, ζ2), · · ·—be a sequence i.i.d. random vectors,

τ > 0, ζ = (ζ(1), · · · ζ(d)) ∈ Rd, d ≥ 1.

Let

T0 := 0, Tn+1 := Tn + τn+1, Z0 := 0, Zn+1 := Zn + ζn+1;

let for t ≥ 0

η(t) := min{k ≥ 0 : Tk > t}, ν(t) := max{k ≥ 0 : Tk ≤ t}.

The compound renewal processes Z(t), Y(t) for the sequence (τj , ζj), j ≥
1, are defined as (see [1], [2])

Z(t) := Zν(t), Y(t) := Zη(t) = Z(t) + ζη(t) t ≥ 0.

Let the Cramer’s moment condition hold:
[C0]. For some δ > 0

Eeδτ+δ|ζ| <∞.
For a vector x = (x(1), · · ·x(d)) ∈ Rd let

∆[x) :=
d∏
j=1

[x(d), x(d) + ∆), ∆ = ∆T > 0,



∆ → 0 slowly enough in not lattice case and ∆ = 1 in arithmetic case.
We study integro-local limit theorems for Z(T ), Y(T ) as T →∞, i.e. the
exact asymptotics for the probabilities

P(Z(T ) ∈ ∆[x)) =?, P(Z(T ) ∈ ∆[x)) =?

in the range of normal and large deviations.
This is joint work with E.I.Prokopenko.

2. Deviation (rate) function

For (λ,µ) = (λ, µ(1), · · ·µ(d)) ∈ Rd+1 let us define

A(λ,µ) := Eeλτ+µζ ,

where µζ := µ(1)ζ(1) + · · ·+ µ(d)ζ(d);

A≤0 := {(λ,µ) : A(λ,µ) ≤ 0}, λ+ := sup{λ : Eeλτ <∞}.

Then for µ ∈ Rd put

A(µ) := − sup{λ : (λ,µ) ∈ A≤0},

where sup{λ : λ ∈ ∅} = −∞;

Â(µ) := max{A(µ), λ+}.

Finely, for α ∈ Rd define deviation (rate) functions D(α) and D̂(α):

D(α) := sup
µ
{µα−A(µ)}, D̂(α) := sup

µ
{µα− Â(µ)}.

3. The Large Deviation Principle

Definition 1. Process {Z(T )
T } satisfies the large deviation principle

(LDP) in Rd with a good rate function D̂(α), if for all sets B ⊂ Rd
(i)

lim sup
T→∞

1

T
lnP(

Z(T )

T
∈ B) ≤ − inf

α∈[B]
D̂(α),

where [B] is closure of B;
(ii)

lim inf
T→∞

1

T
lnP(

Z(T )

T
∈ B) ≥ − inf

α∈(B)
D̂(α),



where [B] is interior of B;
(iii) the set {α ∈ Rd : D̂(α) ≤ c} is compact for all c ≥ 0.
Theorem 1( [2]). Assume

lim inf
T→∞

1

T
lnP(τ ≥ T ) ≥ −λ+.

Then process {Z(T )
T } satisfies LDP in Rd with a good rate fuction D̂(α),

also
lim
T→∞

1

T
lnEeµZ(T ) = −Â(µ).

If, in additionally,
λ+ ≥ D(0)

hold, then
Â(µ) = A(µ), D̂(α) = D(α),

and condition (3) can be omitted.
In case d = 1, λ+ ≥ D(0), Theorem 1 was established in [1].

4. The exact asymptotics in regular case for Z(T ) and Y(T )

Let us define µ = µ(α) : Rd → Rd so that

D(α) = sup
µ
{µα−A(µ)} = µ(α)α−A(µ(α)).

Then (λ(α),µ(α)) := (−A(µ(α)),µ(α)) belongs to the boundary ∂A≤0
of the set A≤0. Let put

A := {α ∈ Rd : (λ(α),µ(α)) ∈ (A)}, C := {α ∈ Rd : µ(α) ∈ (M)},

where

A := {(λ,µ) : A(λ,µ) <∞}, M := {µ : Eeµζ <∞}.

Put
T := {α : λ(α) ≥ λ+}.

Theorem 2.( [3]) Let

α :=
x

T
→ α0 as T →∞.

I. If α0 ∈ A \ T, then

P(Z(T ) ∈ ∆[x)) =
∆d

T
d
2

IZ(α)e−TD(α)(1 + o(1)).



II. If α0 ∈ A ∩ C, then

P(Y(T ) ∈ ∆[x)) =
∆d

T
d
2

IY(α)e−TD(α)(1 + o(1)),

where the continuous functions IZ(α), IY(α) are known in explicit form.
Theorem 2 in case d = 1 was established in [1].

5. The exact asymptotics in non-regular case for Z(T )

[Fτ ]. For all t > 0

P(τ ≥ t) = L(t)e−λ++ctγ ,

where γ ∈ [0, 1), c ∈ R, L(t) = tβl(t)—regularly varying as t → ∞ func-
tion.

Theorem 3. ( [3]) Assume [Fτ ] holds. Let κ := [ 1
1−γ ]; α0 ∈ A∩ (T),

α0 6= 0. Then for α := x
T → α0 we have

P(Z(T ) ∈ ∆[x)) =

∆dL(T )

T
(d−1)

2

C(α)e−TD̂(α)+
∑κ
k=1T kγ−(k−1)gk(α)(1 + o(1)),

where the continuous functions C(α), g1(α), · · · , gκ(α) are known in ex-
plicit form.

6. The exact asymptotics of finite-dimensional distributions
for Z(T )

Let

U0 = 0, U1 →∞, · · · , Um →∞; Wj := U0 + · · ·+ Uj .

In [3] were found fairly extensive conditions, under which for

α0 := 0, αj :=
xj
Uj
→ α0

j , j = 1, · · · ,m,

holds
P(∩mj=1{Z(Wj)− Z(Wj−1) ∈ ∆j [xj)}) =

m∏
j=1

∆d
j

U
d
2
j

IZ(αj−1,αj)e
−UjD(αj)(1 + o(1)).

In article [1], in case d = 1 proposed conditions, under which (6) holds.
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